
Digital Dim Sum:
Mastering Microservices for
Many Palates
DeveloperWeek 2023
API & Microservices Track
February 17, 2023

Spencer Carver
Software Engineer, Bloomberg Media

Hello everyone and welcome to “Digital
Dim Sum: Mastering Microservices for
Many Palates”. I hope this mouthful of a
title was enough to whet your appetite
and pique your curiosity for the
conversation to come, but before we
dig in, a brief introduction.

My name is Spencer Carver, and I’m a
software engineer in Bloomberg Media.
Our flagship product is bloomberg.com,
and for the past 5 years I’ve been
responsible for supporting the growth
efforts of our digital subscriptions
business on the web. In this time I’ve
been fortunate enough to be able to
experiment with a wide range of
technologies and organizational
approaches all aimed at addressing the
ever-changing data needs of our news
business. And so today I thought it
would be fun to share some of these
learnings with all of you through a
stretched metaphor about food.

—

Reference: spencer.carvers.info

Reference: www.bloomberg.com

Reference: Tech at Bloomberg

Software Engineer in Bloomberg Media since 2015,
supporting www.bloomberg.com

Focused on digital subscriptions since 2018

TypeScript / React enthusiast

Enjoys:

● Visual documentation & diagrams
● Food puns
● Forcing tenuous analogies

spencerrc

@spencerrc@masto.nyc

https://spencer.carvers.info��

About Me
A

bo
ut

 M
e

https://spencer.carvers.info
https://www.bloomberg.com
https://www.bloomberg.com/company/values/tech-at-bloomberg/

More specifically, I’d like to borrow the
“Four Levels” framework from the
popular Epicurious YouTube channel,
and apply it to discussing software
design principles and application
architecture. We’ll use this structure to
evaluate a hypothetical product at each
“Level”, and contextualize aspects of
the approach that work, as well as
those that don’t. Finally, after discussing
each case, I’ll try and draw some
conclusions that you can take away in
the event that anything in this talk
sounds familiar.

—

Reference: Four Levels: Pancakes

Objectives of this talk

● Introduce the “Four Levels” framework from the Epicurious
YouTube series

O
bj

ec
tiv

e

● Address each level via a food analogy that relates to Software
Design Patterns around Application Architecture

● Discuss each level and applied learnings in order to answer the
following questions:

○ Where are you now?

○ Which level is right for you?

https://www.youtube.com/watch?v=agZhQYCBaTE

4 LEVELS

Level 4: Food Scientist

Level 3: ProfessionalLevel 2: Home ChefLevel 1: Amateur

● Sufficient Solutions

● Limited Exposure to
Methods

● Familial Knowledge

● Expertise in a Limited
Area

● Broad Understanding

● Breadth of
Experience

● Provides Analysis and Meta-Commentary between each
approach below

Fr
am

ew
or

k

4
le

ve
ls

 lo
go

 re
fe

re
nc

in
g

th
e

E
pi

cu
rio

us
 s

er
ie

s
cr

ea
te

d
fro

m
 p

ie
ro

gi

lin
e

ar
t b

y
Lu

ca
s

C
ol

lin
s

on
 p

ng
ite

m
.c

om
.

The premise of the “Four Levels” series
is to challenge 3 chefs of different skill
levels to make the same dish. The
levels range from amateur to
professional, and then a food scientist
reviews the process each has taken
and explains why techniques applied by
each chef worked well, or where they
could have better leveraged an
approach of one of their peers.

So, keeping this framework in mind, I’d
like to ask you to…

—

Reference: Four Levels: Pancakes

https://www.youtube.com/watch?v=agZhQYCBaTE

Consider: Dumplings

● Well defined components

○ Flavor
○ Cost
○ Preparation Time
○ Appearance

● Can be a stand-alone meal or part of a
larger dim sum experience

● Evaluated on many different aspects

Pr
em

is
e

… consider dumplings. While I find it
fun to philosophically consider
dumplings, they are also a great choice
of dish for the purpose of discussion
within the “Four Levels” framework!

They are simple to start, difficult to
master, and while there are many
variations, there are also consistent
expectations about what constitutes a
quality dumpling.

For each level in our framework, we’ll
consider the dumpling from that chef’s
perspective, and see how that outlook
translates into our hypothetical software
product...

Filling you up on the freshest recipes

Pr
em

is
e

Dumpling Academy

…Dumpling Academy, a recipe website
whose goal is to become the definitive
dumpling resource.

And so, with our prep work out of the
way for both food and technology
discussions, let’s begin cooking…

Level 1:
Amateur

…alongside our Level 1 chef. While
they may bear the label “Amateur”, that
doesn’t mean they don’t know what to
do. First and foremost, the level 1 chef
is concerned with producing their
desired dish, and everything else is
secondary. A singular focus coupled
with lack of experience can lead to
many pitfalls, such as overworking the
dough, improperly seasoning the filling,
or misjudging the cook time, but the
mindset lends itself to many positive
cases as well.

Le
ve

l 1

ProductStorage Infrastructure

st
ea

m
er

 a
da

pt
ed

 fr
om

 a
rt

by
 s

te
ph

an
ie

 w
au

te
rs

 fo
r T

he
 N

ou
n

P
ro

je
ct

A holistic approach means that, given
the freedom to choose any equipment
they need, the level 1 chef will choose
the best option for their dumplings.
Likewise for serviceware and storage,
each choice the chef makes is made in
service of the product’s current needs.
If those needs don’t change with time,
the chef has already obtained the right
tools and experience producing the
product they want, and can focus on
further optimizations rather than
needing to revise their recipe or
process.

Recipe

id: guid;
title: string;
author: Person;
ingredients: string[];
steps: {
 description: string;
 image?: Image;
}[];
…

Person

id: guid;
name: string;
recipes: Recipe[];
bio: string;
…

Product Infrastructure StorageLe
ve

l 1
Le

ve
l 1

: M
on

ol
ith

da
ta

ba
se

 ic
on

 b
y

zw
ic

on
 o

n
sv

gr
ep

o.
co

m

There’s a holistic software design
pattern as well, one you may already be
familiar with in some capacity; the
monolith. When done correctly, an
application leveraging a monolithic
architecture will ensure that each
choice being made benefits the end
product.

Recipe

id: guid;
title: string;
author: Person;
ingredients: string[];
steps: {
 description: string;
 image?: Image;
}[];
…

Person

id: guid;
name: string;
recipes: Recipe[];
bio: string;
…

ProductLe
ve

l 1
Le

ve
l 1

: M
on

ol
ith

Dumpling Academy

Dumpling Academy as a monolith could
make a lot of sense. We’re concerned
only about dumpling recipes and getting
them into the hands of chefs worldwide
as fast as possible. Recipes are well
structured and don’t change much after
they are published, and while we may
have other types of content that we
need to manage, they’re complimentary
in towards our recipe data.

Pros
● Developer Experience

- Debugging

- Deployment

- Development

- Testing

● Uniformity

- Consistency

- Standardization

● Performance

- Speed

● Networking

- Latency

● Management

- Organizational Overhead

- Ownership

● Performance

- Reliability

● (lack of) Logical Isolation

● Infrastructure

- Scalability

- Technical Overhead

● Growth?

Cons
Le

ve
l 1

: M
on

ol
ith

Dumpling Academy

da
ta

ba
se

 ic
on

 b
y

zw
ic

on
 o

n
sv

gr
ep

o.
co

m

Leveraging a monolith benefits
Dumpling Academy in other ways as
well. With everything being co-located,
developer experience is about as
streamlined as it can be. A single
well-maintained codebase allows
debugging and testing tools to work
without the need for much
customization, providing a lower barrier
to getting new developers up and
running. It is also ideal for enforcing
consistent coding standards in a
project, since you are guaranteed to be
using a configuration from a single
location. A well-structured monolith can
minimize external networking calls,
ensuring a speedy response.

Pros
● Developer Experience

- Debugging

- Deployment

- Development

- Testing

● Uniformity

- Consistency

- Standardization

● Performance

- Speed

● Networking

- Latency

● Management

- Organizational Overhead

- Ownership

● Performance

- Reliability

● (lack of) Logical Isolation

● Infrastructure

- Scalability

- Technical Overhead

● Growth?

Cons
Le

ve
l 1

: M
on

ol
ith

Dumpling Academy

da
ta

ba
se

 ic
on

 b
y

zw
ic

on
 o

n
sv

gr
ep

o.
co

m

But while it “can” scale well, doesn’t
mean it does so in all cases. A singular
codebase can create congestion if
multiple features are being developed
simultaneously, and if multiple teams
are supporting a single monolith,
ownership becomes amorphous. Any
defects introduced can crash our entire
recipe site, even if we were only trying
to make additions to our secondary
flows, such as the authoring chef’s
biography page.

Lastly, we may have missed our mark
on the product itself. Dumpling
Academy may have started focused
only on recipes related to dumplings,
but aside from search how will visitors
find content? We may have started by
promoting the newest recipes, or even
the most popular, but perhaps we’re
better served allowing a recipe editor to
manually curate our landing pages.

Pain Points?

If one or more of the following are true, it may be time to reconsider the
monolith as your preferred approach:

Le
ve

l 1
: M

on
ol

ith

1. The monolith is responsible for many unrelated concerns

2. The technology of the monolith is outdated and/or causing problems

3. There are changes that can be introduced (e.g. dynamic data) that can
cause problems in unrelated areas

4. Certain code paths within the monolith are disproportionately used

Dumpling Academy

Dumpling Academy
HOT LIST

Guest Recipes

So what are some signs that a monolith
may not be the right choice for our site?
You may have picked up on the use of
qualifiers earlier when explaining why
this approach benefited Dumpling
Academy. “Well-maintained”.
“Well-structured”. There is a cost to
keeping those statements true,
especially if our site is growing and
changing.

If uniformity of experience is no longer
a core tenant of the product, that is also
a good indicator that a monolith may no
longer be the right pattern. The moment
Dumpling Academy introduced a
configurable landing page, even though
it was showing recipe content, we
started down a slippery slope.

As time goes on the maintainers of
Dumpling Academy change, and so too
does our common technology stack.
Even if our product is still manageable
for now, if the requisite knowledge to
continue operation isn’t something that
is easy to find, being locked in to the
monolith will create more opportunities
for problems.

Pain Points?

If one or more of the following are true, it may be time to reconsider the
monolith as your preferred approach:

Le
ve

l 1
: M

on
ol

ith

1. The monolith is responsible for many unrelated concerns

2. The technology of the monolith is outdated and/or causing problems

3. There are changes that can be introduced (e.g. dynamic data) that can
cause problems in unrelated areas

4. Certain code paths within the monolith are disproportionately used

Dumpling Academy

Dumpling Academy
HOT LIST

Guest Recipes

We may be given opportunities to
leverage syndicated content from other
recipe websites, and while this can be a
great opportunity to provide benefit for
our users, that content is likely not
going to conform to the format of our
own recipes. Any problems loading this
external content could be at best a
slightly degraded or broken experience,
and at worst bring down our entire site.

And lastly, certain parts of our site are
just used more. If we were to start
providing real-time ingredient sourcing
information on our recipe pages, it’s
very easy to see it as an extension of
the monolith, when in reality its
functionally a different product and
should be treated as such.

But if the needs of our site don’t fit with
this approach, what does that mean
we’re growing to? Let’s check in with
our level 2 chef.

Level 2:
Home Chef

The “Home Chef” has realized that a
single holistic view just doesn’t cut it for
the dumplings they want to create.
Instead, they view the problem from a
compartmentalized perspective,
treating each component of their
dumpling as the final product of a
separate process. This allows for
greater flexibility at the cost of
organizational overhead, but the level 2
chef purposefully chooses a structure
that benefits them.

Product

Ingredient Ingredient

Le
ve

l 2
Le

ve
l 2

: M
is

e
En

 P
la

ce

Equipment Equipment

st
ea

m
er

 a
da

pt
ed

 fr
om

 a
rt

by
 s

te
ph

an
ie

 w
au

te
rs

 fo
r T

he
 N

ou
n

P
ro

je
ct

w
ra

pp
er

s
ad

ap
te

d
fro

m
 to

rti
lla

 im
ag

e
fro

m
 fl

at
ic

on
.c

om

Focus on the ingredients as
intermediate products means more
interconnected concerns, but while the
equipment is still important, it’s not a
different concern than our level 1 chef
dealt with, just more common, so we’ll
set gloss over it for now. In the culinary
world, the process by which ingredients
are prepared and laid out before
cooking is referred to by the term “mise
en place”, and there is an applicable
software design pattern that follows the
same practice.

If you hadn’t guessed, that approach is
…

Product

Static Real-Time

Le
ve

l 2
: M

ic
ro

se
rv

ic
es

Person

id: guid;
title: string;
author: Person;
ingredients: string[];
steps: {
 description: string;
 image?: Image;
}[];
…

Curation

id: guid;
title: string;
author: Person;
ingredients: string[];
steps: {
 description: string;
 image?: Image;
}[];
…

Recipe

id: guid;
title: string;
author: Person;
ingredients: string[];
steps: {
 description: string;
 image?: Image;
}[];
…

Ingredient

id: guid;
name: string;
currentPrice: number;
priceHistory: {
 price: number;
 dateTime: number;
}[];
…

Dumpling Academy

… microservices! So what will
Dumpling Academy look like within a
microservice-oriented architecture? We
ran into problems when non-recipes
such as person and curation data
started being treated as primary
concerns on their own pages, so we
want to split out each into their own
service. Likewise, the notion of
entertaining real-time data is a
fundamentally different concern, and so
to should have it’s own service as well.

Pros
● Developer Experience

- Deployment

- Development

● Management

- Ownership

● Performance

- Reliability

● Logical Isolation

● Networking

- Load

● Growth

● Developer Experience

- Debugging

- Testing

● Uniformity

- Consistency

- Standardization

● Management

- Organizational Overhead

● Infrastructure

- Cost

- Technical Overhead

● Networking

- Latency

Cons
Le

ve
l 2

: M
ic

ro
se

rv
ic

es
Dumpling Academy

da
ta

ba
se

 ic
on

 b
y

zw
ic

on
 o

n
sv

gr
ep

o.
co

m

This compartmentalization brings back
some of the perks we saw with a
well-maintained monolith, as each
microservice can easily be developed
and deployed independently; making it
easier to revise large swaths of our
curation-focused pages without even
touching the recipe service at all!

Ownership with this approach can also
be much clearer, as teams can be
responsible for all aspects of a single
service, while still maintaining their
ability to execute independently. This
leads to greater confidence in the
service correctly handling all use cases
before releasing new features or adding
another consumer. This structure also
allows us to create multiple instances of
the recipe service, which is used on
more content pages than the others,
with a smaller impact than if we needed
to scale everything.

And perhaps most importantly, the
microservices pattern sets us up well
for continued growth. A new domain
can be created as an independent
service without concern for impact to
existing pages.

Pros
● Developer Experience

- Deployment

- Development

● Management

- Ownership

● Performance

- Reliability

● Logical Isolation

● Networking

- Load

● Growth

● Developer Experience

- Debugging

- Testing

● Uniformity

- Consistency

- Standardization

● Management

- Organizational Overhead

● Infrastructure

- Cost

- Technical Overhead

● Networking

- Latency

Cons
Le

ve
l 2

: M
ic

ro
se

rv
ic

es
Dumpling Academy

da
ta

ba
se

 ic
on

 b
y

zw
ic

on
 o

n
sv

gr
ep

o.
co

m

But while each service operates well in
isolation, our product is still comprised
of all of these, and there are perils to
this organizational complexity. While
some aspects of developer experience
are improved, others require more
work, such as validating integrations
and workflows that cross multiple
systems. With microservices owned by
separate teams, it becomes more
challenging to maintain the same level
of code standards, and teams may
even choose to use different languages
or technologies to best support their
own work.

Management across teams requires
coordination and understanding of the
full product, which for a large recipe
website is not a trivial ask. Running 4
microservices providing data in addition
to our application means at least 5x the
infrastructural investment, and separate
systems introduce networking call time
which will slow down the user-facing
response.

Pain Points?

1. A microservice has become monolithic

2. Associated infrastructure costs are too high

3. Dependencies between microservices causing problems

Le
ve

l 2
: M

ic
ro

se
rv

ic
es

If one or more of the following are true, it may be time to consider an effort to revise your
afflicted microservices:

PRO
4. Time loss when updating consumers to service changes

5. New features for the product are infeasible or difficult due to logical sprawl

Dumpling Academy

Microservices work well when they are
organized properly around the product
they support, and just as when
discussing the monolithic approach
earlier, there is a cost to ensuring that
the services supporting your application
are compliant. Pain points encountered
with the microservices-oriented
Dumpling Academy are largely due to
the real-world needs of the product
mismatching with the organizational
expectations and not being addressed
in time. What can that look like?

One of our microservices becoming a
monolith in it’s own right is certainly one
possibility, though this can be managed
with the introduction of additional
microservices as well.

However more microservices means
more cost, and it may in fact be a
worthwhile decision to intentionally take
on some developmental pain points in
order to be able to operate at all.

Pain Points?

1. A microservice has become monolithic

2. Associated infrastructure costs are too high

3. Dependencies between microservices causing problems

Le
ve

l 2
: M

ic
ro

se
rv

ic
es

If one or more of the following are true, it may be time to consider an effort to revise your
afflicted microservices:

PRO
4. Time loss when updating consumers to service changes

5. New features for the product are infeasible or difficult due to logical sprawl

Dumpling Academy

As Dumpling Academy grows our user
base larger, we may want to consider a
premium feature, which would mean
introducing authentication into many
aspects of our site. While it may seem
like a good idea to leverage a single
microservice for authentication
purposes, that pattern can very easily
backfire, with multiple microservices
re-checking credentials repeatedly in a
single call path.

While microservices excel for managing
our separate concerns, adding new
attributes also requires each consuming
application to update. Adding
something as simple as a link to a
twitter handle on the person object
could require dozens of updates in
order to make it somewhere
user-facing. And with so many changes
related to adding a single field,
developmental complexity can
skyrocket for more complicated
features.

While compartmentalization has solved
some problems, others continue to
persist, so how would our level 3 chef
approach this problem?

Level 3:
Professional

Before we answer that question, lets
understand the mindset of our
“Professional”. The level 3 chef may not
be trained specifically to make
dumplings, but they are trained to
understand the aspects of what makes
them good. Our chef understands why
certain flavor combinations are
traditional, and what spices can be
added or withheld to for maximum
effect. The level 3 chef is actually more
likely to experiment and deviate from
existing procedures than the level 2
chef, because they are looking to
explore new things to see what
alteration may improve their dumplings
further.

But despite some differences in focus
the level 3 chef is still leveraging
compartmentalization, just on a
different scale. The chef’s exploration of
variety means that each ingredient isn’t
optimized just for one type of dumpling,
but perhaps many. The level 3 mindset
can be described as adaptive, able to
flex between multiple approaches in
order to choose the best option for any
particular product at a given time.

Ingredient IngredientIngredient Equipment

Product BProduct A Product C
Le

ve
l 3

st
ea

m
er

 a
da

pt
ed

 fr
om

 a
rt

by
 s

te
ph

an
ie

 w
au

te
rs

 fo
r T

he
 N

ou
n

P
ro

je
ct

so
y

sa
uc

e,
 w

ra
pp

er
s

(a
da

pt
ed

 fr
om

 to
rti

lla
) i

m
ag

es
 fr

om
 fl

at
ic

on
.c

om

Each version of dumpling needs a slight
variation of each ingredient, and the
result is a large interconnected web of
dependencies. In order to ensure
everything operates smoothly in the
kitchen while enabling the best version
of each dumpling, the level 3 chef will
set aside some additional space to use
for the purpose of assembly.

Ingredient IngredientIngredient Equipment

Product BProduct A Product C
Le

ve
l 3

st
ea

m
er

 a
da

pt
ed

 fr
om

 a
rt

by
 s

te
ph

an
ie

 w
au

te
rs

 fo
r T

he
 N

ou
n

P
ro

je
ct

so
y

sa
uc

e,
 w

ra
pp

er
s

(a
da

pt
ed

 fr
om

 to
rti

lla
) i

m
ag

es
 fr

om
 fl

at
ic

on
.c

om

This reserved area allows our process
to change from each product being
responsible for collecting all of its
ingredients, to being able to request the
specific variations they need. All
ingredients can be returned from the
prep area at one time before being
used for successive steps in our
preparation.

But there’s no reason that the
preparation area can only be used to
collect discrete ingredients…

Ingredient IngredientIngredient Equipment

Product BProduct A Product C
Le

ve
l 3

st
ea

m
er

 a
da

pt
ed

 fr
om

 a
rt

by
 s

te
ph

an
ie

 w
au

te
rs

 fo
r T

he
 N

ou
n

P
ro

je
ct

so
y

sa
uc

e,
 w

ra
pp

er
s

(a
da

pt
ed

 fr
om

 to
rti

lla
) i

m
ag

es
 fr

om
 fl

at
ic

on
.c

om

…we can pass back our assembled,
uncooked dumpling as well!

A well-managed preparation area
provides a critical resource to a
professional kitchen, further leaning into
the organizational constraints that we
already saw benefited our level 2 chef’s
approach earlier. The same is true for
our software design patterns…

Microservice MicroserviceMicroservice Microservice

ApplicationApplication Application
Le

ve
l 3

Dumpling Academy

…where we can extend our
microservice pattern for Dumpling
Academy, and add an intermediate
application to help simplify the need for
multiple applications to have knowledge
of all dependent changes, instead only
needing to understand how to talk to
one system.

And at this point you may be thinking
that there’s no reason that we couldn’t
leverage this approach at level 2 as
well, and you’d be correct!

Microservice MicroserviceMicroservice Microservice

ApplicationApplication Application
Le

ve
l 2

: M
ic

ro
se

rv
ic

e
Fa

ca
de

Facade API

Curation

id: guid;
title: string;
author: Person;
ingredients: string[];
steps: {
 description: string;
 image?: Image;
}[];
…

Recipe

id: guid;
title: string;
author: Person;
ingredients: string[];
steps: {
 description: string;
 image?: Image;
}[];
…

Person

id: guid;
title: string;
author: Person;
ingredients: string[];
steps: {
 description: string;
 image?: Image;
}[];
…

Ingredient

id: guid;
title: string;
author: Person;
ingredients: string[];
steps: {
 description: string;
 image?: Image;
}[];
…

Dumpling Academy

Factoring in a dedicated layer to
selectively expose functionality is an
example of the Facade pattern, and this
can most certainly help alleviate some
of our level 2 pain points! While we are
still adding another service, and taking
on the organizational and infrastructural
costs associated with doing so, a
facade service can help reduce the
number of updates needed whenever a
microservice updates, as well as add
back a small amount of consistency in
that each application only needs to
manage the ability to talk to the facade.

Microservice MicroserviceMicroservice Microservice

ApplicationApplication Application
Le

ve
l 2

 /
Le

ve
l 3

Curation

id: guid;
title: string;
author: Person;
ingredients: string[];
steps: {
 description: string;
 image?: Image;
}[];
…

Recipe

id: guid;
title: string;
author: Person;
ingredients: string[];
steps: {
 description: string;
 image?: Image;
}[];
…

Person

id: guid;
title: string;
author: Person;
ingredients: string[];
steps: {
 description: string;
 image?: Image;
}[];
…

Ingredient

id: guid;
title: string;
author: Person;
ingredients: string[];
steps: {
 description: string;
 image?: Image;
}[];
…

Dumpling Academy

So what would our level 3 chef do
differently? While they acknowledge
that reducing the pain of having to
replicate data changes to every
consumer application is a recipe for
success, there’s room for improvement.
Likewise a pure facade will only be
exposing access to the various
microservices without adding logic
itself, meaning multiple calls to the
facade. You could potentially add the
ability for the facade to handle
one-to-many calls, but that
re-introduces violations of logical
isolation.

The answer comes from a very similar
place as our earlier level progression,
added constraints! From level 1 to level
2, we added organizational constraints
based on the various types of data and
how they were used. This allowed us to
create individual services for each type,
and grow the overall system
accordingly. The same is true from level
2 to level 3, except instead of an
organizational constraint on the type of
data, we’re going to introduce one on
the shape of the data, through an
approach known as Federation.

ApplicationApplication Application
Le

ve
l 3

: F
ed

er
at

ed
 G

at
ew

ay

Gateway

Curation

id: guid;
title: string;
author: Person;
ingredients: string[];
steps: {
 description: string;
 image?: Image;
}[];
…

Recipe

id: guid;
title: string;
author: Person;
ingredients: string[];
steps: {
 description: string;
 image?: Image;
}[];
…

Person

id: guid;
title: string;
author: Person;
ingredients: string[];
steps: {
 description: string;
 image?: Image;
}[];
…

Ingredient

id: guid;
title: string;
author: Person;
ingredients: string[];
steps: {
 description: string;
 image?: Image;
}[];
…

NOTE: The logo for
GraphQL represents the
Federated tier, but
Federation does not need to
be based on GraphQL!

Microservice MicroserviceMicroservice Microservice

Dumpling Academy

Federation operates under the same
compartmentalization paradigm as our
earlier microservices approach, but
additionally provides strict guidance for
the facade tier, which in this pattern is
called the Gateway. Because the shape
of your data is well defined coming from
each sub-service, the gateway is able
to act more intelligently than a
traditional facade. If an application asks
the gateway for recipe data containing
fields related to the author, the gateway
is able to leverage the known shape of
data and interpret that into a call to both
the recipe and person services, and
return all desired information in a single
request.

The Federated approach also defines a
process called “introspection”, which
allows the gateway to request the
current shape of the data each
dependency is able to provide. This
enables the gateway to dynamically
compose itself without direct code
changes or deployments, meaning that
the only time you need to actively
modify the gateway is when you want to
add new microservices behind it!

Compare & Contrast: Facade vs. Federation

● Both patterns leverage creating a common access tier for consumers to interact with multiple dependent

systems, without needing full knowledge of the details of those systems. The Federated approach has an

additional constraint on the shape of the data called the federation protocol

Le
ve

l 2
 /

Le
ve

l 3

● A pure facade only helps with routing to services and slightly fewer updates. A facade service can do more, but

requires workflow-based logic in the facade itself, violating the goal for logical isolation

● A service leveraging federation has the same benefits as a facade service, but doesn’t require defining logic in

the gateway, due to the federation protocol

● You can utilize introspection to dynamically retrieve protocol updates from connected microserves, further

reducing development burden around updates

Both patterns help reduce repetition
with regard to contractual updates, and
require different trade-offs.

A facade can be pure and contain no
workflow logic, or a microservice itself
that needs to be managed properly by
any teams owning those flows.

The federated gateway gets the benefit
of each facade variant; being updated
only with new service like a pure
facade, but able to merge requests
between subservices like a facade
service. This is due to strict conformity
to the federation protocol, which also
yields the benefit of introspection.

It’s important to fully evaluate what it
means to conform to a federation
protocol before jumping in, because the
cost of adopting such an approach may
be high. If your services are already
leveraging well-defined communication
form, such as with GraphQL, it may be
easier to adopt federation if you so
desire.

Pros
● Developer Experience

- Deployment

- Development

● Uniformity

- Standardization

● Management

- Ownership

● Performance

- Reliability

● Logical Isolation

● Growth

● Developer Experience

- Debugging

- Testing

● Uniformity

- Consistency

- Standardization

● Management

- Organizational Overhead

- Ownership

● Infrastructure

- Cost

- Technical Overhead

● Networking

- Latency

Cons
Le

ve
l 3

: F
ed

er
at

io
n

Dumpling Academy

da
ta

ba
se

 ic
on

 b
y

zw
ic

on
 o

n
sv

gr
ep

o.
co

m

So what exactly does federation offer
Dumpling Academy? First and
foremost, it still provides the same
benefits to developer experience as the
microservices approach. The federation
protocol provides standardization to
communication that applies even if
some services are written in a different
language.

Each microservice can still be owned
separately and updated freely, which
continues to benefit the stability of
releases and how well the services
perform. The gateway and protocol
allow for continued logical isolation as
all data definitions live with each
microservice, even if they are
accessible elsewhere in the system.
Updates to existing microservices are
easier to make, and new microservices
can be added at any time, just as
before.

Pros
● Developer Experience

- Deployment

- Development

● Uniformity

- Standardization

● Management

- Ownership

● Performance

- Reliability

● Logical Isolation

● Growth

● Developer Experience

- Debugging

- Testing

● Uniformity

- Consistency

- Standardization

● Management

- Organizational Overhead

- Ownership

● Infrastructure

- Cost

- Technical Overhead

● Networking

- Latency

Cons
Le

ve
l 3

: F
ed

er
at

io
n

Dumpling Academy

da
ta

ba
se

 ic
on

 b
y

zw
ic

on
 o

n
sv

gr
ep

o.
co

m

Similarly, the drawbacks to this
approach are very similar to what we
saw with traditional microservices,
where integration between systems is
less straightforward. While the
federation protocol provides many
benefits, there is a cost to keeping
everything compliant, and if you’re
adopting for the first time, it can be a
large effort to bring existing systems
into compliance.

The gateway tier can operate without
explicit workflow logic, but interacts with
every workflow, so what team maintains
it? Furthermore, every team using the
gateway now has a knowledge
dependency on how it works. The
gateway tier brings on at least one
additional service to pay for and
manage, and likely with higher
throughput compared to the other
services in the system due to its role.
And while the federated approach is
ideally reducing the number of network
round-trips between services, there are
still latency concerns as well.

Pros
● Developer Experience

- Deployment

- Development

● Uniformity

- Standardization

● Management

- Ownership

● Performance

- Reliability

● Logical Isolation

● Growth

● Developer Experience

- Debugging

- Testing

● Uniformity

- Consistency

- Standardization

● Management

- Organizational Overhead

- Ownership

● Infrastructure

- Cost

- Technical Overhead

● Networking

- Latency

Cons
Le

ve
l 3

: F
ed

er
at

io
n

Dumpling Academy

da
ta

ba
se

 ic
on

 b
y

zw
ic

on
 o

n
sv

gr
ep

o.
co

m

The federated approach relies on strict
organizational and data-structural
constraints in order to provide
additional benefit beyond a traditional
microservices approach. This deliberate
trade-off of increased upfront
complexity for reduced time and effort
later, can certainly provide benefits!

But it can be easy to make this trade-off
and then find yourself in a situation
where it isn’t worth it, and before we
talk about possible situations where this
may happen, it’s finally time to meet our
food scientist.

?
Level 4:

Food Scientist

Now in my mind level 4 is a bit of a
misnomer here, because the “Food
Scientist” isn’t producing any dumplings
themselves. Instead their role is to
highlight what each chef has done well
during the preparation of their dish,
investigate anything that went wrong,
and provide context for the strengths
and shortcomings of each approach, as
well as where techniques can be
shared between them.

So let's begin by reviewing the mindset
of each chef when making dumplings.

Level 2: Home Chef Level 3: ProfessionalLevel 1: Amateur

Le
ve

l 4

● Holistic concerns ● Compartmentalized
concerns

● Adaptive concerns

● Incurs organizational
overhead to the
benefit of logical
isolation of concerns

● Incurs organizational
overhead to the
benefit of logical
isolation of concerns

● Incurs structural
overhead for further
benefit

The level one chef is focused on holistic
concerns around the creation of their
dumpling and they’ll use the equipment
and supplies that enable them to make
the best possible dumpling they can.

The level two chef leverages “mise en
place” as a technique for
compartmentalizing concerns and
ensuring that each part of their
dumpling is given individual focus. They
proactively invest effort into more
strictly organizing their process and
sub-products before starting to be able
to handle more concerns along the way
to their ideal dumpling.

And finally the level three chef, who
also leverages strict organization
around the cooking process, but builds
on that with structure of the kitchen,
which is needed as they generally are
producing more components for a wider
variety of dumplings.

While each chef in the “Four Levels”
series is differentiated by experience,
the level 4 mindset acknowledges that it
isn’t their defining characteristic.

Level 2: MicroservicesLevel 2: Microservices Level 3: Federation

W
he

n
to

 U
se

W
he

n
to

 C
ha

ng
e

● Consistent product
unlikely to change

● Budgetary,
Developmental, or
Infrastructural
limitations

Level 1: Monolith

● Scope has diversified
from original designs

● Singular codebase is
difficult to manage for
developers

● An existing
Microservice structure
is insufficient in
addressing business
concerns

● All Data adheres to a
federation protocol

● Access patterns don’t
benefit from
federation

● Upkeep and
Overhead no longer
beneficial

● Additional logistical
and infrastructural
costs are palatable

● Substantial overhead
managing connection
to a large number of
microservices

Le
ve

l 4
While we are still calling each approach
a “level”, that doesn’t mean any given
approach is better than another in all
cases, there are actually places where
each pattern excels, and well as where
they don’t.

A monolith is a great choice for a
product with consistency and
uniformity. It can also be a choice by
necessity, where constraints such as
budget or resourcing mean that
managing multiple services on a
day-to-day basis just isn’t feasible. And
yes, a monolith is a common pattern
when just starting out, but I’d like to
argue that’s because the concerns
when starting are generally smaller and
more related, and not because it’s an
easier or less skilled pattern.

If you have a monolith, recall some of
the pain points we discussed earlier:
realizing that your product is no longer
as well-defined or manageable given
current resources as it once was.
Splitting the monolith to microservices
is not a small task, but if you can align
on an organization that benefits your
approaches, it may be worth it.

● Ability to leverage
existing systems

● Non-overlapping or
heavily customized
concerns

● Parallelizable work

Level 2: MicroservicesLevel 2: Microservices Level 3: Federation

W
he

n
to

 U
se

W
he

n
to

 C
ha

ng
e

● Consistent product
unlikely to change

● Budgetary,
Developmental, or
Infrastructural
limitations

Level 1: Monolith

● Scope has diversified
from original designs

● Singular codebase is
difficult to manage for
developers

● An existing
Microservice structure
is insufficient in
addressing business
concerns

● All Data adheres to a
federation protocol

● Access patterns don’t
benefit from
federation

● Upkeep and
Overhead no longer
beneficial

● Additional logistical
and infrastructural
costs are palatable

● Substantial overhead
managing connection
to a large number of
microservices

Le
ve

l 4
Leveraging the various benefits of
proper organization is the biggest
benefit of microservices. If services
already exist you can add more quite
easily or build on top of existing ones,
though doing so creates some
concerns about latency if you aren’t
careful. The approach is significantly
better for parallelizing work among
multiple teams, since separating
developmental concerns is the
foundational assumption.

Not everyone who adopts microservies
is going to find the pattern benefits
them enough where the additional costs
and overhead is worth it, and that that’s
ok. While it isn’t the easiest task to
switch back and forth between the
patterns, it may better support the
needs of your product to switch at
times. But if some additional cost is
palatable, there are additional factors
that can be addressed by transitioning
a microservices architecture into a
federated one.

● Ability to leverage
existing systems

● Non-overlapping or
heavily customized
concerns

● Parallelizable work

Level 2: MicroservicesLevel 2: Microservices Level 3: Federation

W
he

n
to

 U
se

W
he

n
to

 C
ha

ng
e

● Consistent product
unlikely to change

● Budgetary,
Developmental, or
Infrastructural
limitations

Level 1: Monolith

● Scope has diversified
from original designs

● Singular codebase is
difficult to manage for
developers

● An existing
Microservice structure
is insufficient in
addressing business
concerns

● All Data adheres to a
federation protocol

● Access patterns don’t
benefit from
federation

● Upkeep and
Overhead no longer
beneficial

● Additional logistical
and infrastructural
costs are palatable

● Substantial overhead
managing connection
to a large number of
microservices

Le
ve

l 4
If your microservices were already
close to adhering to a federation
protocol, which is a very real possibility,
the switch may not be significantly more
than the lift for another new
microservice. And many products are
able to comply with strict structural
standards for data, making the
developmental benefits of the federated
gateway a compelling choice! But it’s
also important to acknowledge the
opposite, that there are some products
and usage patterns that wouldn’t
benefit from a federated gateway, and if
you do have such a product, don’t force
it! Federation is an investment towards
developmental growth, and if that
outlook ever does change, or the
management of a shared tier isn’t
working out, don’t be afraid to move
back towards traditional microservices
either.

● Ability to leverage
existing systems

● Non-overlapping or
heavily customized
concerns

● Parallelizable work

Each approach is the right choice for a
certain scenario, and it’s even possible
to start at the beginning with any of
them. In fact, if you have well-defined
data from the get-go, federation is a
fantastic choice! But in general consider
starting with either a monolith or
traditional microservices structure
depending on available resources and
initial expectations.

And so we’ve reached the end of our
comparisons, and have hopefully
reinforced the value of each approach
in the right situation. As we wrap up, I’d
like to ask you to consider a few closing
items. First…

Level 2: MicroservicesLevel 2: Microservices Level 3: Federation

W
he

n
to

 U
se

W
he

n
to

 C
ha

ng
e

● Consistent product
unlikely to change

● Budgetary,
Developmental, or
Infrastructural
limitations

Level 1: Monolith

● Scope has diversified
from original designs

● Singular codebase is
difficult to manage for
developers

● An existing
Microservice structure
is insufficient in
addressing business
concerns

● All Data adheres to a
federation protocol

● Access patterns don’t
benefit from
federation

● Upkeep and
Overhead no longer
beneficial

● Additional logistical
and infrastructural
costs are palatable

● Substantial overhead
managing connection
to a large number of
microservices

Le
ve

l 4

● Ability to leverage
existing systems

● Non-overlapping or
heavily customized
concerns

● Parallelizable work

Where are you now?

Which level is right for you?

Le
ve

l 4
Think of a product you’re involved with,
and where you are now with regard to
the current approach you follow. How
well it is working for you?

Second, for that same product, which
level is right for you? If it’s where you
already are, do you need to make any
refinements to ensure everything
continues smoothly? If it isn’t, how can
you transition to the right level?

Third…

Consider: Dumplings

Developer Experience
Uniformity
Management
Performance
Logical Isolation
Infrastructure
Networking
Growth

Debugging, Deployment, Development, Testing

Organizational Overhead, Ownership

Consistency, Standardization

Reliability, Speed

Cost, Technical Overhead

Latency, Load

Le
ve

l 4
Consider: D.U.M.P.L.I.N.Gs …let's consider Dumplings, but finally

tying it to our technology discussion.
What aspects of our dumplings do we
most care about?

Of all the different pros and cons
discussed today, which is most
important to you and where are you
willing to make trade-offs? Which
approach best emphasizes that
balance?

Regardless of which “level” you’re at
and where you want to be, so long as
you identify and work towards the
aspects you care about, I bet you’ll be
happy with your dumplings.

W
ra

p
U

p

4 LEVELS

4
le

ve
ls

 lo
go

 re
fe

re
nc

in
g

th
e

E
pi

cu
rio

us
 s

er
ie

s
cr

ea
te

d
fro

m
 p

ie
ro

gi
 li

ne

ar
t b

y
Lu

ca
s

C
ol

lin
s

on
 p

ng
ite

m
.c

om
.

And finally, leaving our framework and
food analogies behind, I’d like to offer
anyone who made it this far some free
access to bloomberg.com; Check out
our news content, and perhaps observe
a product that was able to leverage
some aspects of our discussion that
weren’t so hypothetical after all.

Thank you.

—

Reference: dumpling.academy

https://dumpling.academy

